
SANKHYA Translation Framework
Murali Desikan

Sankhya Technologies Private Limited
Tel: +91 44 28227358

 Fax: +91 44 28227357

muralid@sankhya.com

Gopi Kumar Bulusu
Sankhya Technologies Private Limited

gopi@sankhya.com

ABSTRACT
In this paper, we describe a framework for developing dynamic,
model-driven translation and transformation tools. The
framework includes a translation modeling language using which
data can be represented in multiple formats within a single
model. The framework provides translation tools and Application
Programming Interfaces (APIs) using which structure of input
data can be validated against a model and the input can be
translated to a different format specified in the model. The
framework also allows data to be obtained from different sources
like files, databases etc for processing.

Keywords
Model-driven translation, data integration, EAI, adapters,
dynamically target-able program translation tools

1. INTRODUCTION
Activities like data integration and Enterprise Application
Integration (EAI) require conversion of data from one format to
another either statically or dynamically. In a data integration
system, user queries will generate information from multiple data
sources and they need to be collated and converted to a format
required by the end-user or other applications. In an EAI
environment different applications interact with each other
possibly in a distributed environment and there will be a need for
adapters and connectors for bridging the differences in data
formats, network protocol formats, database formats etc.

There exist a very wide range of solutions and tools for data
integration and application integration. These range from
dedicated solutions to general-purpose integration platforms that
can be customized to a specific environment.

In this paper, we provide a brief introduction to the SANKHYA
Translation Framework (STF), a general-purpose framework for
building model-driven translation and transformation tools. STF
can be used to build dynamic model-driven parsers, data
integration systems and automate EAI activities like document
and message processing, protocol conversion, text to XML
transformations, XML to C++ and Java code generation, server
page processing, data conversion and adapter development.

The SANKHYA Translation Framework (STF) provides a
powerful modeling language called the SANKHYA Translation
Modeling Language (STML) for modeling language grammars,
document schema, and for specifying translation and
transformation rules. By using STML it will be possible to model
document formats, message formats etc in multiple
representations in a single unified model.

STF includes a command-line tool called the STML Translator,
which is a model-driven translation and transformation tool.

STML Translator can be used to automatically translate between
different data representations specified using a STML model. For
more complex translation and transformation requirements, the
STML C++ library provided by STF can be used and extended.
In addition to this, STF also provides a CORBA based server,
which can be integrated with existing systems to provide
document translation and data integration capabilities in a
distributed environment.

2. SANKHYA TRANSLATION
FRAMEWORK (STF)
The SANKHYA Translation Framework is a collection of tools
and libraries for developing model-driven, dynamic tools for
language parsing, data integration and EAI. The term ‘model-
driven’ refers to the use of a model for capturing
translations/transformations, document structure, message
formats etc. The term ‘dynamic’ refers to the fact that the
modeled information is external to the framework and can be
changed without affecting the framework. This is in contrast to
integration tools where the input and output data formats,
translation logic and other conversion details are statically
specified (i.e., hard coded within the application).

The high-level architecture of STF is shown in figure 1 below.

Figure 1. High-level Architecture of STF

2.1 Components of STF
2.1.1 STML Model
The STML Model consists of the STML specification of one or
more modeled entities (document format, message formats etc).

Input

STML
Parser

Translation
Logic

Model
Database

STML
Model

Output

API

Streams
Module

2.1.2 STML Parser
The STML parser performs syntax and semantic analysis on the
STML model description and creates an internal representation
of the model information in the Model Database.

2.1.3 Model Database
This structure stores all the information about the entity modeled
using STML Model. The translation logic consults this database
for providing information to the translation tools and during
translation.

2.1.4 Translation Logic
This module is responsible for translating/transforming the input
present in a specific STML representation into the corresponding
output representation.

2.1.5 Streams Module
STF provides a pluggable streams module using which input can
be obtained from multiple sources for processing. The different
data sources could be file, database, string, ftp, http and any
other repository of data. STF provides a streams library that
includes support for file stream, string stream and Open Data
Base Connectivity (ODBC) [1] stream. The ODBC stream can be
used to obtain data from any database for which ODBC support
(driver) is available in the system. The stream support can be
extended to implement new streams of data. The new streams
can be created as dynamically linked libraries and registered
with STF so that they can be used directly without any further
changes to the framework.

3. SANKHYA TRANSLATION MODELING
LANGUAGE (STML)
The SANKHYA Translation Modeling Language is a simple but
powerful language for modeling language grammars, document
structure, translations and transformations. STML can be used to
establish the equivalence between multiple representations of the
same information in a unified model. STML was designed with
the following guidelines in mind:

1) The modeling language should be simple, text-based and
easy to understand.

2) The language should allow the description of an element in

many different representations within a single model. This
is a very important requirement since it establishes an
equivalency between these multiple representations and
allows different translation tools to make use of the same
model of the information.

3) The modeling language should support hierarchical

description of information. It should be possible to view the
modeled entity as a tree structure with a root node, internal
nodes and leaf nodes.

4) The language should provide support for different types like

integers, characters, strings etc. It should also provide
support for specifying range of values, array types and
sequence types.

5) The language should provide support for inheritance and
aggregation of element properties. This will be useful for
describing an element, which is a superset or subset of
another element that has already been described in the
model.

6) The modeling language should support constructs for easily

adding or removing elements from a model. This will be
useful for dynamically modifying the property of the
modeled entity.

3.1 STML Elements
STML allows the depiction of document formats, message
formats or any other hierarchical information by providing
constructs for specifying a tree structure. These constructs are the
STML Root Element, STML Node Element and STML Leaf
Element.

3.1.1 STML Root Element
The STML Root element represents a node that can occur in the
root of a hierarchy of the information being modeled. Each
STML Root element can contain references to other STML Node
elements. There can be multiple STML Root element
descriptions in a model corresponding to different alternatives for
matching the root element of the hierarchy.

3.1.2 STML Node Element
The STML Node element represents an internal node in the
hierarchy. Each STML Node can contain references to other
STML Node elements and STML Leaf elements.

3.1.3 STML Leaf Element
The STML Leaf element represents a leaf node in the hierarchy
of the entity being modeled.

STML also provides the following constructs for aggregating
individual STML elements:

3.1.4 STML Sequence Element
The STML Sequence element defines an element that is a
repeated sequence of a previously defined STML element. This
can be used to match repeated occurrence of an element in input.

3.1.5 STML Union Element
The STML Union element defines an element as a set of other
STML elements, out of which it can represent any one element at
any time.

3.2 STML Representations
The power of STML is that it allows an entity to be described in
multiple representations (different document formats, protocol
formats etc) within a single model. What this means is that once
the input information is parsed according to the STML Model
and the model database is created, the database will contain
information about the entity in all the representations. This can
then be used to convert information from one representation to
any other representation specified in the STML Model.

In a STML Model, each STML Element description of the
modeled entity consists of descriptions of the entity in each of the
representations. An STML Representation consists of a list of

STML Values that describe the entity in a particular
representation. The list of values could be constant values or
reference to other STML Elements.

3.3 STML Values
An STML Value is a placeholder for data. It can either contain
constant data or it can be a reference to another STML Element.
An STML Representation contains a list of such STML Values.
An STML Value can contain attributes (name-value pairs)
associated with it. The attributes can be used to match a specific
element based on the attribute values.

3.4 STML Types
STML provides certain data types for describing STML Values.
These include:

a) STML Word – represents a sequence of characters
from a set of characters defined in the STML Model

b) STML Any – represents any sequence of characters
excluding white space

c) STML Symbol – represents a symbol that can be set
externally and looked up from a symbol table

3.5 Examples
This section provides three examples of how STML can be used
to model translations for tool integration, data integration and
processor modeling.

1) XMI to IDL Conversion Tool:

The XML Metadata Interchange (XMI) [2] is an XML
specification standardized by the Object Management Group
(OMG) for interchanging metadata between modeling tools. It
provides constructs to describe the Unified Modeling Language
(UML) [3] specification of a system in textual format.

Consider a tool that allows a system to be modeled graphically
using UML and which generates a CORBA IDL [4] specification
for the UML model. This tool can provide a GUI environment for
creating UML diagrams of the system. The diagrammatic design
information can then be converted into XMI format. Finally, the
XMI specification can be converted into the corresponding IDL.
The XMI-IDL conversion can be modeled using STML and
performed using STF tools.

An outline of the STML Model for modeling a simple UML class
definition in XMI and IDL formats is provided below.

----- Start of Sample Model -----

STMLModel XMI_IDL {

 STMLLeaf ClassBegin {

 STMLWord name;

 xmi = { “<UML:Class>”, name };

 idl = { “interface”, name, “{“ };

 };

STMLLeaf ClassEnd {

 xmi = { “</UML:Class>” };

 idl = { “};“ };

 };

 STMLNode ClassBody {

 // Definition not provided…

 };

 STMLNode ClassDef {

 ClassBegin cbeg; ClassBody cbody;

 ClassEnd cend;

 xmi = { cbeg, cbody, cend };

 idl = { cbeg, cbody, cend };

 };

 STMLRoot Document {

 ClassDef cd;

 xmi = { cd };

 idl = { cd };

 };

};

----- End of Sample Model -----

Explanation:

The STMLModel construct defines a model and associates a
name with it. In the above example the model is given the name
‘XMI_IDL’. The STML Root element ‘Document’ includes a
reference to a UML class definition node ‘ClassDef’. This node
in turn contains references to ClassBegin, ClassBody and
ClassEnd elements. The ClassBegin element maps a UML Class
to an IDL interface. The ClassBody (definition not provided) can
describe the XMI definition of a class and the equivalent IDL
constructs. This can include definition of attributes, operations
etc.

The above model is a very brief outline only and is provided to
highlight a possible usage scenario in tool integration.

2) Text to XML Conversion:

Consider a Purchase Order (PO) for a list of items that includes
the following information: Serial Number, Product Description,
Unit Price, Quantity and Row Total.

Suppose that a text version of the PO is available in the
following format:

POSTART 1 item1 100 10 1000 POEND

Suppose that the textual data has to be converted to XML format
as specified below:

<PO>

 <SERIAL> 1 </SERIAL>

 <DESCRIPTION> ITEM1 </DESCRIPTION>

 <PRICE> 100 </PRICE>

 <QUANTITY> 10 </QUANTITY>

 <TOTAL> 1000 </TOTAL>

</PO>

To convert between the text format and XML format (and vice
versa) of the PO, a STML Model can be written describing the
PO in both these representations. This can be done as follows:

----- Start of Sample Model -----

STMLModel PO {

 STMLLeaf POHeader {

 xml = { "<PO>" }; text = { "POSTART" };

 };

 STMLLeaf POFooter {

 xml = { "</PO>" }; text = { "POEND" };

 };

 STMLLeaf SNO {

 STMLAny sno;

 xml = { "<SERIAL>", sno, "</SERIAL>" };

 text = { sno };

 };

 STMLLeaf DES {

 STMLAny des;

 xml ={"<DESCRIPTION>", des,

 "</DESCRIPTION>" };

 text = { des };

 };

 STMLLeaf UP {

 STMLAny up;

 xml = { "<PRICE>", up, "</PRICE>" };

 text = { up };

 };

 STMLLeaf QTY {

 STMLAny qty;

 xml = { "<QUANTITY>", qty, "</QUANTITY>" };

 text = { qty };

 };

 STMLLeaf RT {

 STMLAny rt;

 xml = { "<TOTAL>", rt, "</TOTAL>" };

 text = { rt };

 };

 STMLLeaf PORow {

 SNO sno; DES des; UP up; QTY q; RT rt;

 xml = { sno, des, up, q, rt };

 text = { sno, des, up, q, rt };

 };

 STMLLeaf PORowSeq : sequence (PORow);

 STMLNode POBody {

 POHeader h; POFooter f; PORowSeq r;

 xml = { h, r, f };

 text = { h, r, f };

 };

};

----- End of Sample Model -----

Explanation:

In the above example the model is given the name ‘PO’. Each of
the components of the purchase order – viz. serial number,
product description etc are described as STML Leaf elements in
the model. Each of these elements has two STML
Representations corresponding to XML (‘xml’) and text (‘text’)
formats. Note the reference to previously defined STML Leaf
elements in the definition of PORow element. The PORowSeq
element specifies a sequence of PORow elements to define the
rows of the PO. Finally the STML Node element, POBody, is
defined as an aggregate of the individual PO components already
defined as STML Leaf elements.

By providing this model to the STML Translator, the textual
form of the PO can be converted to the XML representation and
vice versa. This example can be extended to support other
representations (like HTML) also in the same model.

3) Processor Modeling:

This example shows how STML can be used to model the
instruction set architecture of a processor in two different formats
– viz. assembly code and machine code. A sample processor is
assumed and its general-purpose registers and one instruction are
modeled.

 ----- Start of Sample Model -----

STMLModel Proc {

 STMLLeaf reg {

 range (i = 0, 31,1) {

asm = { “r$i” }; mcode = { $i };

 };

 }; // reg

 STMLNode add {

 reg r1, r2, r3;

 asm = { “add”, r1, r2, r3 };

 mcode = { or(26,6,8), r1(21,5), r2(16,5),

 r3(11,5), or(0,11,0) };

 }; // add instruction

};

 ----- End of Sample Model -----

Explanation:

A sample processor, ‘Proc’ is modeled above. The STMLLeaf
element ‘reg’ describes the general-purpose registers of the
processor. The ‘range’ specification in the element indicates that
32 registers are available and named as ‘r0’ through ‘r31’ in the
assembly code (represented by ‘asm’). In machine code

(represented by ‘mcode’), the registers have value 0-31 as
indicated by ‘$i’. The STMLNode element ‘add’ describes the
add instruction of the processor in assembly and machine code.
The three register operands of the add instruction refer to the
previously defined ‘reg’ element. The machine code
representation of the instruction specifies the bit encoding of the
add instruction. The ‘or’ values represent constant bit fields with
starting bit, length and value specified in them. The other values
in the mcode specification (for e.g., r1(21,5)) represent the
encoding for each of the three register operands of the
instruction.

The above model can be expanded to include all operands and
instructions of the processor. An assembler can use this model
and translate input assembly code to machine code for the
processor. Similarly, a dis-assembler can use the model to
translate from machine code to assembly code.

4. THEORY OF OPERATION
In a formal sense, a STML Model can be viewed as a unified
specification of the grammars of multiple languages or document
schema, which exhibit certain structural equivalence [5].
Consider a set of languages, L1…Ln with corresponding
grammars G1…Gn. Each of the grammars consists of a set of
production rules, which specify the rules for deriving sentences
of the corresponding language [6]. Let the production rule Pi of a
grammar Gj be represented as follows:

 Pi:Gj X � α

where, X is a non-terminal symbol of Gj and α is a string of
terminals and/or non-terminals symbols of Gj. The production
rules of the grammars G1…Gn are considered as equivalent if
they represent the same concept in the corresponding languages
(for e.g., a ‘sentence’ in English and French or a ‘class’ in two
programming languages). Such equivalent productions rules are
unified and described by a single element in STML. So, an
element in STML can be viewed as a unified production rule of a
set of equivalent production rules of the individual grammars.

The STML parser takes the STML description and creates a
unified specification of the multiple representations. When an
input is provided in any of the representations, a parse tree is
created, which contains the unified STML elements as nodes.
The input sentence can then be translated to an equivalent
sentence in any of the representations specified using STML by
traversing the parse tree and applying the production rules
corresponding to the output representation.

5. STF CONFIGURATIONS
STF can be used in the following configurations:

1) Command-line Tool:

The STML Translator is a tool that can automatically translate
input between different representations specified in a STML
Model. The STML Model and the data to be translated are
provided as inputs to STML Translator. The tool uses the STML
Parser to validate the STML Model and the Translation Logic of
STF to convert between the representations specified in the
STML Model. The STML Translator can source data from
different sources like files, URLs and databases (through ODBC)
during translation.

2) C++ API:

For complex translation, transformation and document processing
applications, the STML C++ library can be used instead of the
STML Translator. The application can access the STML Parser,
the Translation Logic and the Model Database of STF through
the library. This provides greater control to the application for
processing, translation and transformation tasks.

3) Client-Server:

STF is also available as a CORBA based server that can be used
for developing distributed document-processing and translation
applications.

6. COMPARATIVE TECHNOLOGIES
The SANKHYA Translation Framework is a novel concept for
building dynamic, model-driven translation and transformation
tools. To the best knowledge of the developers, no similar
technology exists at present. So, direct comparison with any
existing technology is not possible. However, it is possible to
compare and contrast individual aspects of STF with other
existing technologies. A brief summary of this is provided below.

6.1 Data Modeling
STML provides capabilities similar to the eXtensible Markup
Language (XML) [7] for modeling data. XML allows description
of layout and structure of data using user-defined markups. An
XML processor can verify if input data conforms to a specific
XML schema. In a similar way, STML provides constructs to
describe structure and format of data. In addition, STML allows
dynamic information (in the form of actions) to be associated
with the model elements. STML differs from XML in the
following ways:

1) Ability to represent multiple representations of the
same data in a single model

2) Ability to attach parsing actions to an element, which
will be performed when the element is processed
during translation/transformation.

6.2 Translation/Transformation Modeling
The eXtensible Stylesheet Language Transformation (XSLT) [8]
is a XML based language using which transformations on XML
documents can be specified. XML tools can be used to transform
an XML document to another XML document or HTML
document based on an XSLT specification.

STF provides a powerful setup for modeling and performing
translations and transformations. STF differs from XSLT based
systems in the following ways:

1) General-purpose transformation modeling. Translations
and transformations are not restricted to a single format
(like XML).

2) Ability to execute element-specific external actions
during transformation.

3) Ability to obtain information from different sources for
processing.

6.3 Parsing
STF can be used to build parsers for formal languages. The
language structure (grammar) can be described as a STML
Model and the STML Parser and STF APIs can be used to build
a lexical analyzer and parser for the language. In this respect,
STF can be used as a replacement for lex, yacc [9] and other
lexical analyzer and parser tools. STF provides the following
features that are not available with the above-mentioned tools.

1) In STF, the grammar is specified external to the tools
and hence any changes to the grammar will not require
the application to be rebuilt. Whereas, in tools like
yacc, the grammar specification has to be statically
processed and the generated parser has to be statically
linked to the application.

2) Ability to attach attributes to grammar elements and to
control parsing based on attributes.

3) Ability to inherit grammar elements and attributes.

4) Ability to perform top-down as well as bottom-up
parsing.

7. APPLICATIONS OF STF
The following are some application areas where STF can be
used:

1) Developing data integration tools and EAI tools

As mentioned earlier, STF can be used to automate EAI
activities like document conversion, message processing,
protocol conversion, data conversion and adapter
development, to name a few.

2) Developing model-driven program translation tools

STF can be extended to support modeling of
microprocessors and for developing model-driven,
dynamically target-able program translation tools like
parser, code generator, assembler, linker and simulator. The
instructions and operands of a processor can be described
using STML elements. Each of these elements can contain
the intermediate code, assembly code and machine code
representation of the instruction and operands. The program
translation tools can use the same model of a processor and
translate between different representations of a program
using STF. For e.g., a code generator can use the model of a
processor to translate between intermediate code to
assembly code (using STF) and an assembler can use the
same model to translate between assembly code and
machine code. The SANKHYA Tools Collection, a
collection of compiler tools (code generator, assembler,
simulator) being developed by Sankhya, uses STF for
program translation and transformation.

3) Developing natural language translators

STF can be used to build tools for natural language
translation. The syntax of the languages to be translated can
be specified using STML and either the STML Translator or
a program that makes use of the STF libraries can be used
to perform the translation between the languages.

4) Developing model-driven document servers

STF can be used to develop model-driven document servers
that obtain document information from multiple sources,
compose the document and transform it to the format
required by clients. The input format of the documents and
the format required by clients can be different and hence
format conversion may be required. The different document
representations can be modeled using STML and the server
can use the STML Model and convert the documents to the
required format. This approach has been used in one of
Sankhya’s products to obtain processed information from
application server and render them as HTML pages for use
with a web browser.

8. CONCLUSION
This paper provides an overview of the SANKHYA Translation
Framework. STF is a novel framework for developing model-
driven, dynamic document processing and translation tools.
These technologies are the result of over 4 years of Research &
Development work conducted at our organization. We believe
that these tools and concepts represent the state-of-the-art in the
areas of dynamic and model-driven tools technology.

9. ACKNOWLEDGEMENTS
We thank the Languages and Tools Group of our organization for
their contributions to the technologies mentioned in this paper
and for their inputs to this paper.

10. REFERENCES
[1] ODBC 2.0 Programmer’s Reference and SDK Guide,

Microsoft Press, ISBN1-55615-658-8

[2] XML Metadata Interchange (XMI) Specification,
Version 2.0, OMG Document

[3] Unified Modeling Language (UML) Version 1.5,
OMG Document

[4] CORBA 3.0.2 Specification, Chapter 3 IDL Syntax &
Semantics, OMG Document

[5] Gopi Kumar Bulusu, Murali Desikan et al. Method for
Specifying Equivalence of Language Grammars and
Automatically Translating Sentences in One
Language to Sentences in Another in a Computer
Environment (PCT Patent Application No:
PCT/IN02/00159)

[6] Tremblay, J.P. and Manohar, R. Discrete
Mathematical Structures with Applications to
Computer Science, ISBN 0-07-463113-6, pp. 294-308.

[7] Extensible Markup Language (XML) 1.0 (Second
Edition) - http://www.w3.org/TR/REC-xml

[8] XSL Transformations - http://www.w3.org/TR/xslt

[9] John R. Levine, Tony Mason, Doug Brown. Lex and
Yacc, O’ Reilly, ISBN 1-56592-000-7

